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ABSTRACT 

More than 340 million pounds (lbs) of U30 8 have been produced from the Grants uranium deposits 
in New Mexico between 1948 and 2002, and at least 403 million lbs of U30 8 remain as unmined 
resources. The Grants district is one of the largest uranium provinces in the world. The Grants district 
extends from east of Laguna to west of Gallup in the San Juan Basin of New Mexico. 

Three types of sandstone uranium deposits are recognized: tabular, redistributed (roll-front, fault
related), and remnant-primary. The tabular deposits formed during the Jurassic \1\estwater Canyon time. 
Subsequently, oxidizing solutions moved downdip, modifying tabular deposits into redistributed roll
front and fault-related deposits. Evidence, including age dates and geochemistry of the uranium deposits, 
suggests that redistributed deposits could have been formed shortly after deposition in the early Creta
ceous and from a second oxidation front during the mid-Tertiary. 

The source of uranium is important in understanding how the Grants deposits formed. Two possible 
sources exist: 1) the Zuni Mountains, which lie south of the district and consist of a Proterozoic granitic 
highland enriched in uranium with as much as 11 parts per million, and with high heat flow; and 2) vol
canic rocks erupted from a Jurassic arc volcanism, which formed southwest of the San Juan Basin, and 
deposited ash over much of the region. Uranium was likely leached from the Jurassic volcanic rocks, 
Jurassic ash, and the Precambrian granites; these leaching waters then migrated into the San Juan Basin. 
Leaching waters then mixed with pore water containing uranium that was leached from the detrital vol
canic ash in the host sediments. The uraniferous groundwater migrated into the Wefi.water Canyon sand
stones and precipitated in the vicinity of humate and other organic material to form the tabular uranium 
deposits. The recognition that there are different sources of uranium and different mechanisms of ura
nium deposition, aids in understanding the complexity and local variations within the tabular deposits. 
These deposit characteristics had a major impact on the remobilization and redistribution of uranium to 
form the redistributed deposits. 

Although several companies continue to be active in the district, future resource development will 
depend upon lowering production costs, perhaps by in situ recovery techniques, and the resolution of 
regulatory issues. 

Mclemore, Virginia T., The Grants Uranium District, New Mexico: Update on source, deposition, and exploration, The Mountain Geologist, v. 48, no. 1, p. 
23-44. www.rmag.org. 
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INTRODUCTION 

During a period of nearly three decades (1951-1980), 
the Grants uranium district in northwestern New Mexico 
(Fig. 1) yielded more uranium than any other district in the 
United States (Tables 1, 2). Although there are no produc
ing operations in the Grants district today, extensive 
reserves and resources remain in the district (Table 3). 
Many deposits in the Grants district were defined in the 
1970s and 1980s but not mined because of the decrease in 
demand and price of uranium in the 1980s. Numerous 
companies have acquired uranium properties (Table 3; 
Mclemore, 2007) and plan to explore and develop 
deposits in the district in the near future using both con
ventional and in situ recovery technology. 

The Grants uranium district in the San Juan Basin 
extends from east of Laguna to west of Gallup, New Mex
ico and consists of eight subdistricts (Fig. 1; Mclemore and 
Chenoweth, 1989). The Grants district is probably fourth in 
total world production behind East Germany, Athabasca 
Basin in Canada, and South Africa (Tom Pool, 2002, Gen
eral Atomics, Denver, Colorado, written comm.). Most of 
the uranium production in New Mexico has come from the 
Jurassic \1\..estwater Canyon Member of the Morrison For
mation of the San Juan Basin located in McKinley and 
Cibola (formerly Valencia) counties (Table 2; Mclemore, 
1983). 

Although there are many previous studies addressing 
the formation of the Grants uranium deposits, some ques
tions remain, including: 

• What is the spatial and temporal distribution of the ura
nium deposits in the Grants district? 

• What is the source of the uranium in the Grants district? 
• What is the economic potential of the deposits in the 

Grants district? 

The purpose of this report is to briefly describe the gen
eral types of uranium deposits and their mining history, 
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production, geology, resources, deposition, source and 
future economic potential in the Grants district of New 
Mexico. Much of this report is summarized from Mclemore 
(1983, 2007), Mclemore and Chenoweth (1989, 2003), 
Mclemore et al. (2002), and other reports as cited. Infor
mation on specific mines and deposits in New Mexico can 
be found in cited references Mclemore (1983), and 
Mclemore et al. (2002). 

HISTORY AND PRODUCTION 

Interest in uranium as a commodity began in the early 
1900s, however, several deposits in New Mexico were dis
covered and mined originally for radium. Radium was pro
duced from the White Signal district in Grant County 
(Gillerman, 1964) and the Scholle district in Torrance, 
Socorro, and Valencia counties (Mclemore, 1983). Exact pro
duction figures are unknown, but are probably very small. 

..bhn Wade of Sweetwater, Arizona first discovered ura
nium and vanadium minerals in the Saltwash Sandstone 
Member of the Morrison Formation in the carrizo Moun
tains, located in the northwestern San Juan Basin, about 
1918 (Chenoweth, 1993, 1997). At that time, the Navajo 
Reservation was closed to prospecting and mining. On 
June 30, 1919, a Congressional Act opened the reservation 
to prospecting and locating mining claims in the same 
manner as prescribed by the Federal mining law 
(Chenoweth and Mclemore, 2010). The area remained 
inactive from 1927 to 1942. In 1942, the Vanadium Corpo
ration of America (VCA) was the highest bidder for vana
dium in the east Carrizo Mountains, called the East 
Reservation Lease (no. 1-149-IND-5705). Uranium in the 
vanadium ore was secretly recovered via a uranium circuit 
at the Monticello mill (Utah) for the Manhattan Project in 
1943-1945. The total amount of recovered uranium is esti
mated at 44,000 pounds (lbs) U30 8, mostly from King Tutt 
Mesa (Chenoweth, 1985a). Mining ceased in the east Car
rizo Mountains in 1967. 
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The United States (US) Atomic Energy Commission 
(AEC) was created in 1947. From 1948 through 1966, the 
AEC purchased all of the uranium concentrate produced in 
New Mexico from buying stations. During the last few 
years of the AEC program (1967-1970), the AEC allowed 
mill operators to sell uranium to electric utilities. In New 
Mexico this amounted to over 17.4 million lbs of U30 8 
(Aibrethsen and McKinley, 1982). The price schedules, 
bonuses, and other incentives offered by the AEC created a 
prospecting boom that spread across the Four Corners area 
to all parts of New Mexico. Discoveries were made in the 
Saltwash Sandstone Member in the Chuska Mountains near 
Sanostee (Mclemore and Chenoweth, 1997; Chenoweth 
and Mclemore, 2010), and in the Todilto limestone near 
Grants (Berglof and Mclemore, 2003). The announcement 
of Paddy Martinez's discovery of uranium in the Todilto 
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Figure 1. Subdistricts in the Grants 
uranium district, San Juan Basin, 
New Mexico. Polygons outline 
approximate areas of known 
uranium deposits. 

limestone at Haystack Butte in 1950 brought uranium 
prospectors to the Grants area. It was Lewis Lothman's dis
covery in March 1955 at Ambrosia Lake subdistrict that cre
ated the uranium boom in the Westwater canyon 
Sandstone Member in the Grants district. These discoveries 
led to a significant exploration effort in the San Juan Basin 
between Laguna and Gallup and ultimately led to the 
development of the Grants uranium district. 

Exploration activity in the area led to active mining and 
mills were soon built and operated in the Grants district 
and at Shiprock, New Mexico. The Anaconda Bluewater 
mill was built at Bluewater, west of Grants in 1953, to 
process ores from the nearby Todilto deposits using a car
bonate leach circuit until the circuit was closed in 1959. 
The Bluewater mill then operated an acid leach circuit to 
process ore from the J3ckpile mine in December 1955 

The Rocky Mountain Association of Geologists 
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TABLE 1 

Uranium production by type of deposit from the San .l.Jan Basin, including the Grants district, New Mexico from 1947 through 2002 
(Mclemore and Chenoweth, 1989, 2003; production from 1988 to 2002 estimated by the senior author). Total United states (US) 

production from Mclemore and Chenoweth (1989) and Energy Information Administration (2006). 

Production per total in 
TyJE of deposit Production (lbs U30 8) Period of production (years) New Mexico (percent) 

Primary, redistributed, remnant 330,453,000 1 1951-1988 95.4 
sandstone uranium deposits 
(Morrison Formation, Grants district) 

Mine-water recovery 9,635,869 1963-2002 2.4 
(Morrison Formation, Grants district) 

Tabular sandstone uranium deposits 493,510 1948-1982 0.1 
(Morrison Formation, Shiprock district) 

Other Morrison Formation sandstone 991 1955-1959 
uranium deposits (San Juan Basin) 

Other sandstone uranium deposits 503,279 1952-1970 0.1 
(San Juan Basin) 

Limestone uranium deposits 6,671,798 1950-1985 1.9 
(Todilto limestone; predominantly 
Grants district) 

Other sedimentary rocks with 34,889 1952-1970 
uranium deposits (total N M) 

Vein-type uranium deposits (total N M) 226,162 1953-1966 

Igneous and metamorphic rocks with 69 1954-1956 
uranium deposits (total N M) 

Toal in New Mexico 348,019,0001 1948-2002 100 

Tolal in United States 927,917,0001 1947-2002 37.5 of total US 

1 approximate figures rounded to the nearest 1,000 lbs. There hasn't been any uranium production from New Mexico since 2002. 

(Aibrethsen and McKinley, 1982). The Bluewater mill closed 
in 1982. The Homestake mill, 5.5 miles north of Milan, actu
ally consisted of two mills. The southern mill, built in 1957, 
was known as the Homestake-New Mexico Partners mill 
and was closed in 1962 (Chenoweth, 1989a; Mclemore and 
Chenoweth, 2003). The Home;take-Sapin Partners, a part
nership between Homestake and Sabre Pinon Corporation 
(Corp.), in 1957 built a second, larger mill north of the first 
facility. In 1962, United Nuclear Corp. merged with Sabre 
Pinon Corp., but maintained the United Nuclear Corp. 
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name. In March 1981, the United Nuclear-Horrestake Part
nership was dissolved and Home;take became the sole 
owner. The Homestake mill ceased production in 1981, but 
reopened in 1988 to process ore from the Section 23 mine 
and Chevron's Mt. Taylor mine. The mill closed soon after 
and was decommissionEd and demolished in 1990. 

In 2001, Homestake Corp. merged with Barrick Gold 
Corp. Homestake completed reclamation of the Homestake 
mill at Milan in 2004. Kermac Nuclear Fuels Corp., a part
nership of Kerr-McGee Oil Industries, Incorporated (Inc.), 
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TABLE2 

Uranium production and types of deposits by district or subdistrict in the San Juan Basin, New Mexico (Mclemore and 
Chenoweth, 1989; production from 1988 to 2002 estimated by the author). Some district names have been changed from 

Mclemore and Chenoweth (1989) to conform to Mclemore (2001). See Mclemore (1983), Mclemore and Chenoweth 
(1989), and Mclemore et al. (2002) for more details and locations of additional minor uranium occurrences. 

District 

Grants district 

1. Laguna 

2. Marquez 

3. Bernabe Montano 

4. Ambrosia Lake 

5. Smith Lake 

6. Church Rock-Crownpoint 

7. Nose Rock 

8. Chaco Canyon 

Shiprock district 

9. Carrizo Mountains 

10. Chuska 

11. Tocito Dome 

12. Toadlena 

Other areas and districts 

13. Zuni Mountains 

14. Boyd prospect 

15. Farmington 

18. Chama Canyon 

19. Gallina 

20. Eastern San Juan Basin 

21. Mesa Portales 

22. Dennison Bunn 

23. La Ventana 

24. Collins-Warm Springs 

25. Ojito Spring 

26. Coyote 

27. Nacimiento 

28. Jemez Springs 

Production 
(lbs U30 8) 

>100,600,000 

28,000 

None 

>211 ,200,000 

>13,000,000 

>16,400,000 

None 

None 

159,850 

333,685 

None 

None 

None 

74 

3 

None 

19 

None 

None 

None 

290 

989 

None 

182 

None 

None 
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Grade 
(U30 8 percent) 

0.1-1.3 

0.1-0.2 

0.1-0.5 

0.2 

0.1-0.2 

0.23 

0.12 

0.05 

0.02 

0.04 

0.63 

0.12 

0.06 

Period of Production 

1951-1983 

1979-1980 

1950-2002 

1951-1985 

1952-1986 

1948-1967 

1952-1982 

1955 

1954 

1954-1956 

1954-1957 

1957-1959 

1954-1957 
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TABLE3 

Estimated uranium resources in the Gran1s uranium district, New Mexico. Mine identification number (Mine id) and Subdistrict 
are from the New Mexico Mines Database (Mclemore et al., 2002). Most deposi1s are delineated on maps by Mclemore and 
Chenoweth (1991) and described in more detail by Mclemore et al. (2002). (Note thatthe information presented is from the 

best data available and is subject to change as new data are obtained. Resource statistics are generally historic and not 
Canadian Instrument 43-101 compliant.) Host rock abbreviations are: Kd=Dakota Formation, .ln=Morrison Formation, 

Jj=Jackpi le Sandstone, Jp=Poison Canyon Sandstone, Jb=Brushy Basin Member, Jwc=Westwa1er Canyon Sandstone, 
Js=Wanakah (Summerville) sandstone, Jt=Todilto limestone. 

11,540,000 

1,500,000 Laguna Pueblo 

8,443,000 Uranium Resources 

6,529,000 Uranium Resources 

11,848,007 Strathmore 

27,000,000 Mobil-TVA 
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TABLE 3 ( cont'd) 

29 

Total Resources 
(lbs u3o8) 

38,959,000 

600,000 

200,000 

388,434 

850,000 

14,822,000 

3,500,000 

751,000 

12,653,000 

7,257,817 

9,620,000 

11,300,000 

4,164,000 

840,000 

9,130,343 

10,700,000 

3,217,000 

Primary Company 

Uranium Resources 

United Nuclear-TVA 

United Nuclear-TVA 

Laramide Resources 

Gulf 

Quincy 

Ranchers Exploration 

Neutron Energy Inc. 

Neutron Energy Inc.; 

Laramide Resources 

Roca Honda-Kerr-

strathmore 

Uranium Resources 

Gulf 

Kerr-McGee, TVA 

Neutron Energy 

Homestake 

The Rocky Mountain Association of Geologists 
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TABLE 3 ( cont'd) 

30,250,000 Rio Grande Resources 

828,000 Pioneer Nuclear 

2,250,000 United Nuclear Corp. 

708,589 Navajo Nation Indian 

2,850,000 Kerr-McGee 

4,200,000 Kerr-McGee 

21,900,000 Uranium Resources 

3,620,000 Phillips Petroleum Co. 

2,070,800 Phillips Petroleum Co. 

14,017,298 Strathmore 

11,362,640 Ausamerican Mining 

17,512,000 Strathmore 

14,700,000 Uranium Resources 
Inc. 

8,208,000 51 percent Neutron 
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TABLE 3 ( cont'd) 

Total 

Rock-Crownpoint Dalton Pass 

(Begay 
Allotment) 

Anderson Development Corp., and Pacific Uranium Mines 
Company (Co.), built the Kerr-McGee mill at Ambrosia 
Lake in 1957-1958. In 1983, Quivira Mining Co., a sub
sidiary of Kerr-McGee Corp. (later Rio Algom Mining llC, 
currently BHP-Billiton) became the operator. The mill 
began operating in 1958 and from 1985-2002, the mill pro
duced only from mine waters from the Ambrosia Lake 
underground mines. Quivira Mining Co. is no longer pro
ducing uranium and the Ambrosia Lake mill and mines are 
being reclaimed. Phillips Petroleum Co. also built a mill at 
Ambrosia Lake in 1957-58. United Nuclear Corp. acquired 
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1,002,160 Trans America 

1,529,823 

2,500,000 

19,600,000 Gulf, Santa Fe 

2,600,000 United Energy Corp. 

403,122,587 

the property in 1963, when the mill closed. The Depart
ment of Energy (DOE) remediated the site between 1987 
and 1995 as part of the Uranium Mill Tailings and Remedi
ation Act (UMTRA) of 1978. Additional mills were built in 
the Shiprock, Laguna, and Church Rock areas and are cur
rently being reclaimed (Mclemore and Chenoweth, 2003). 

Annual uranium production in New Mexico increased 
steadily from 1948 to 1960, from 1965 to 1968, and from 
1973 to 1979. Peak production was attained in 1978, with a 
record yearly production of 9,371 tons of U30 8 that was 
shipped to mills and buying stations (Mclemore, 1983; 
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Mclemore and Chenoweth, 1989, 2003). Production from 
mine-water recovery from underground mines by Quivira 
Mining Co., formerly Kerr-McGee Corp., amounted to 
9,635,869 lbs of U30 8 from 1963-2002 (Table 1). 

All of the conventional underground and open-pit 
mines in New Mexico closed by 1989 for several reasons: 

• The Three Mile Island incident resulted in finalizing a 
growing public perception in the US that nuclear power 
was dangerous and costly; subsequently nuclear power 
plants became unpopular. 

• There was an overproduction of uranium in the 1970s 
through the early 1980s that led to large stockpiles of ura
nium. In addition, the dismantling of nuclear weapons by 
the US and Russia also increased thESe stockpiles, reduc
ing the need for mining uranium. 

• New Mexico uranium deposits in production were 
decreasing in grade by nearly half during the 1980s. 

• The cost of mine and mill reclamation was increasing in 
cost and was not accounled for in original mine plans and 
mill contracts, making the existing mines uneconomic. 

• Higher grade, more attractive uranium deposits were 
found elsewhere in the world. 
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Figure 2. Sketch of the different types of ura
nium deposits found in the Morrison Forma
tion. See text for description. 

• Large coal deposits were found throughout the US in 
the 1970s that could meet the nation's energy needs, 
and the nation shifted to coal-fired electrical plants in 
response to the Three Mile Island incident. 

The decline in the price of uranium during 1989-2005 
resulted in no uranium production (except mine-water 
recovery), exploration, or development in the district. 
Many companies reclaimed and I or sold their properties. 
However, today with the recent increase in price and 
demand for uranium, numerous companies are acquiring 
new and old properties and exploring for uranium in the 
Grants district. 

The Grants district is once again an attractive area for 
uranium exploration. Some reasons for this are: 

• Major companies abandoned properties in the district 
after the last cycle leaving advanced uranium projects 
with delineated resources. 
Current property acquisition costs are inexpensive 
because the properties include millions of dollars worth 
of exploration and development expenditures. 

ED_000571_00002604-00010 
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Secondary roll
front 

• Data and technical expertise on these properties are 
available. 

• Recent advances in in situ leaching, heap leaching, and 
milling technology allow for the Grants district sand
stone uranium deposits to be economically attractive. 

TYPES OF URANIUM DEPOSITS 
IN THE GRANTS DISTRICT 

The most important type of deposit in terms of produc
tion and resources in the San Juan Basin of New Mexico 
are sandstone uranium deposits in the Jurassic Morrison 
Formation. Other types of deposits have yielded uranium 
ore (Mclemore and Chenoweth, 1989). 

Sandstone Uranium Deposits in the 
Jurassic Morrison Formation 

The most significant deposits are those in the Morrison 
Formation, specifically the WEStwater Canyon Member, 
where more than 340,088,869 lbs of U30 8 were produced 
from the Morrison Formation from 1948 to 2002, including 

33 

Figure 3. Sketch of the formation of 
redistributed sandstone uranium 
deposits in the Grants district. See text 
for description. Abbreviations used: 
S=sulfur; Se=selenium; U=uranium. 

mine-water recovery (Table 1 ). In contrast, production from 
other sandstone uranium deposits in New Mexico amounts 
to 503,279 lbs of U30 8 (Table 1, 1952-1970; Mclemore and 
Chenoweth, 1989). Other sandstone uranium deposits in 
New Mexico include sedimentary copper with uranium, 
roll-front sandstone deposits in Cretaceous and Tertiary 
sandstones, sedimentary uranium deposits, and beach
placer sandstone deposits; these are described in Mclemore 
(1983) and Mclemore and Chenoweth (1989). 

There are three types of deposits in the Westwater 
Canyon Member of the Morrison Formation: primary 
(trend or tabular), redistributed (stack), and remnant-pri
mary sandstone uranium deposits (Figs. 2, 3). Primary 
sandstone-hosted uranium deposits, also known as pre
fault, trend, blanket, and black-band ores, are found as 
blanket-like, roughly parallel ore bodies along trends, 
mostly in sandstones of the WEStwater Canyon Member. 
These ore bodies are characteristically less than 8 feet (ft) 
thick, average more than 0.20 percent U30 8, and have 
sharp ore-to-waste boundaries (Fig. 2). The largest ore 
bodies in the Grants uranium district contain more than 
30 million lbs of U30 8 (Table 3; Mclemore et al., 2002). 
These are some of the highest grade sandstone uranium 
deposits in the world and are unusual in their association 
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with humates (International Atomic Energy Agency, 
2009). 

Redistributed sandstone-hosted uranium deposits, also 
known as post-fault, stack, secondary, and roll-type ores, 
are younger than the primary sandstone-hosted uranium 
deposits. They are discordant, asymmetrical, irregularly 
shaped, characteristically more than 8ft thick, have diffuse 
ore-to-waste contacts, and cut across sedimentary struc
tures. The average deposit contains approximately 18.8 
million lbs U30 8 with an average grade of 0.16 percent 
(Table 3; Mclemore et al., 2002). Some redistributed ura
nium deposits are vertically stacked along faults (Fig. 2). 
Other deposits are similar in form to typical roll-front ura
nium deposits (Fig. 3). 

Remnant sandstone-hosted uranium deposits were pre
served in sandstone after the oxidizing waters that formed 
redistributed uranium deposits had passed. Some remnant 
sandstone-hosted uranium deposits were preserved 
because they were surrounded by or were found in less 
permeable sandstone and could not be oxidized by the 
groundwaters. Other deposits were cemented by calcite 
and quartz and subsequent fluids could not oxidize those 
deposits. These deposits are similar to primary sandstone
hosted uranium deposits, but are difficult to locate because 
they occur sporadically within the oxidized sandstone. The 
average size is approximately 2.7 million lbs U30 8 at a 
grade of 0.20 percent (Mclemore and Chenoweth, 1991). 

The majority of the proposed models for the formation 
of the primary uranium deposits in the Morrison Formation 
suggest that deposition occurred at a groundwater inter
face between two fluids of different chemical compositions 
and I or oxidation-reduction states. More recent models, 
such as the lacustrine-humate and brine-interface models, 
have refined or incorporated portions of early theories on 
the origin of the uranium deposits. No consensus has 
developed on details of the deposit models describing the 
origin of the Morrison primary sandstone uranium deposits 
(Nash et al., 1981; Sanford, 1992). 

In the lacustrine-humate model, groundwater was 
expelled by compaction from lacustrine muds formed by a 
large playa lake into the underlying fluvial sandstones 
where humate or secondary organic material precipitated 
as a result of flocculation into tabular bodies. During or 
after precipitation of the humate bodies, uranium was pre
cipitated from groundwater (Turner-Peterson, 1985; Fish
man and Turner-Peterson, 1986). This model proposes the 
humate bodies were formed prior to uranium deposition. 

In the brine-interface model, uranium and humate were 
deposited during compaction and diagenesis by reduction 
at the interface of meteoric freshwater and groundwater 
brines (Granger and Santos, 1986). In another variation of 
the brine-interface model, groundwater flow is driven by 
gravity, not compaction. Groundwater flowed downdip 
and discharged in the vicinity of the uranium deposits. 
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Uranium precipitated in the presence of humates at a grav
itationally-stable interface between relatively dilute, shal
low meteoric water and saline brines that migrated updip 
from deeper in the basin (Sanford, 1982, 1992). Modeling 
of the regional groundwater flow in the Colorado Plateau 
during Late Jurassic and Early Cretaceous times supports 
the brine-interface model (Sanford, 1982). The groundwa
ter flow was impeded by upthrown blocks of Precambrian 
crust and forced upwards. These zones of upwelling are 
closely associated with uranium-vanadium deposits 
throughout the Colorado Plateau (Sanford, 1982). 

In the Grants district, the bleaching of the Morrison For
mation sandstones and the geometry of tabular uranium
vanadium bodies located in the middle of the sandstone 
beds support the reaction of two chemically different 
waters, most likely a dilute meteoric water and saline brine 
from deeper in the basin. The intimate association of ura
nium-vanadium minerals with organic material indicates 
that the uranium and vanadium were deposited at the 
same time. Cementation and replacement of feldspar and 
quartz grains with uranium-vanadium minerals are consis
tent with deposition during early diagenesis. 

During the Tertiary, after formation of the primary sand
stone uranium deposits, oxidizing groundwaters migrated 
through the uranium deposits and remobilized some of the 
primary sandstone uranium deposits (Saucier, 1981). Ura
nium was reprecipitated ahead of the oxidizing waters 
forming redistributed sandstone uranium deposits. Where 
the sandstone host surrounding the primary deposits was 
impermeable and the oxidizing waters could not dissolve 
the deposit, remnant-primary sandstone uranium deposits 
remain (Figs. 2, 3). 

Sandstone uranium deposits are found in other forma
tions in New Mexico, but to date, were insignificant com
pared to the Morrison Formation deposits (Mclemore and 
Chenoweth, 1989). Some companies are once again explor
ing in these units, especially in the Baca and Crevasse 
Canyon formations in the Riley-Pietown areas, Socorro and 
Catron counties, and in the Ojo Alamo Sandstone in the 
Mesa Portales area, Sandoval County (Mclemore and 
Chenoweth, 1989). Uranium reserves and resources remain 
in the Grants uranium district that could be mined in the 
future by conventional underground techniques and by in 
situ leaching technologies (Table 3; Holen and Hatchell, 
1986, Mclemore and Chenoweth, 1991, 2003). 

Tabular Sandstone Uranium-Vanadium Deposits 
in the Salt Wash and Recapture Members 

Tabular sandstone uranium-vanadium deposits in the Salt 
Waffi and Recapture members of the Morrison Formation 
are restricted to the east Carrizo Mountains (including the 
King Tutt Mesa area), and Chuska Mountains subdistricts of 
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the Shiprock district, western San Juan Basin. Production 
totals 493,535 lbs of U30 8 (Table 2) for these districts. The 
Salt Wash Member is the basal member of the Morrison For
mation and is overlain by the Brushy Basin Member 
(Anderson and Lucas, 1992, 1995; Mclemore and 
Chenoweth, 1997). It unconformably overlies the Bluff
Summerville Formation, using older stratigraphic nomencla
ture (Anderson and Lucas, 1992), or the \Ncmakah 
Formation as proposed by Condon and Peterson (1986). 
The Salt Wash Member consists of 190-220 ft of interbedded 
fluvial sandstones and floodplain mudstones, shales, and 
siltstones. The mudstone and siltstone comprise approxi
mately 5 to 45 percent of the total thickness of the unit 
(Masters et al., 1955; Chenoweth, 1993). 

These tabular uranium deposits are generally elongated 
parallel to paleostream channels and are associated with 
carbonized fossil plant material. A cluster of small ore bod
ies along a trend could contain as much as 4,000 tons of 
ore averaging 0.23 percent U30 8 (Hilpert, 1969; Chenoweth 
and Learned, 1984; Mclemore and Chenoweth, 1989, 1997). 
They tend to form subhorizontal clusters that are elongated 
and blanket like. Ore bodies in the King Tutt Mesa area are 
small and irregular. Only a few ore bodies have yielded 
more than 1,000 lbs of U30 8. A typical ore body in the 
King Tutt Mesa area is 150-200 ft long, 50-75 ft wide, and 
approximately 5 ft thick (Mclemore and Chenoweth, 1989, 
1997). The deposits are typically concordant to bedding, 
although discordant lenses of uranium-vanadium minerals 
crosscut bedding planes locally. The ore bodies typically 
are found in the middle of the sandstone bed, but locally, 
they are found at the interface between sandstone and less 
permeable shale or siltstone. However, unlike uranium 
deposits in the Grants district, the deposits at King Tutt 
Mesa are high in vanadium. The uranium:vanadium (U:V) 
ratio averages 1:10 and ranges 1:1 to 1:16. 

The deposits in the Saltwash Sandstone Member are 
largely black to red, oxidized, and consist of tyuyamunite, 
meta-tyuyamunite, uranium and organic compounds, and 
a variety of vanadium minerals, including vanadium clay 
(Corey, 1958). Uranium and vanadium minerals are inti
mately associated with detrital organic material, such as 
leaves, branches, limbs, and trunks, derived from adjacent 
sandbar, swamp, and lake deposits, and humates. Small, 
high-grade ore pods (>0.5 percent U30 8) were associated 
with fossilized wood. The uranium-vanadium minerals 
form the matrix of the mineralized sandstones and locally 
replace detrital quartz and feldspar grains. Mineralized 
beds are associated with coarser-grained sandstone, are 
above calcite-cemented sandstone or mudstone-siltstone 
beds, are associated locally with mudstone galls, and are 
near green-to-gray mudstone lenses. Limonite is com
monly associated with the ore bodies (Masters et al., 
1955). Field and petrographic data suggests that the ura
nium-vanadium deposits formed shortly after deposition 
of the host sediments (Hilpert, 1969). 
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The majority of the uranium in the upper Recapture 
Member of the Morrison Formation is confined to a zone 
of light-gray sandstone with a maximum thickness of 60ft 
which occurs from 10 to 170 ft below the Recapture-West
water Canyon contact. Mineralized zones range from 20 to 
300ft in length and from a few inches to 20ft in thickness. 

Two types of uranium occurrences are found in the 
upper unit of the Recapture Member (Biagbrough et al., 
1959). In the first, uranium occurs above or below a mud
stone or siltstone unit, in a medium- to fine-grained, light
gray sandstone. The siltstone or mudstone is commonly 2 
or 3 ft thick and is altered from red-to-green. The mineral
ized zone is a few inches to 2 ft thick and ranges in grade 
from a trace to as much as one percent U30 8. Uranium is 
fairly continuous along the siltstone or mudstone unit, and 
some uraniferous zones can be followed for a distance of 
300 ft. The richest deposits occur along mudstones, which 
lie unconformably on sandstones; deposits along siltstones 
are commonly low grade. 

The second type of mineralized zone ranges in thick
ness from a few inches to 20 ft and has a lateral extent of 
as much as 300 ft. The uranium is in a medium- to fine
grained, light-gray, thick sandstone lens and occurs as a 
halo around lime concretions that range in diameter from a 
few inches to 6 ft. Thin, irregular stringers and pebbles of 
mudstone and siltstone also have halos of uranium which 
are as much as 3 ft thick. The mudstones are chiefly red, 
but siltstones are altered to green. Uranium is also found in 
sandstone lenses containing red mudstone galls. Where the 
uranium forms a halo around and impregnates the galls, 
the mineralization it is commonly 1 or 2 ft thick. A thick 
mudstone or siltstone usually underlies the mineralized 
sandstones, and the lens is capped with an altered mud
stone or siltstone. 

Modeling of the regional groundwater flow in the Col
orado Plateau during Late Jurassic and Early Cretaceous 
times supports the brine-interface model for these deposits 
and indicates that the regional groundwater flow was to 
the northeast in the King Tutt Mesa area (Sanford, 1982). 
In the King Tutt Mesa area, the bleaching of the sand
stones and the geometry of tabular uranium-vanadium 
bodies support the reaction of two chemically different 
waters, most likely a dilute meteoric water and saline brine 
from deeper in the basin (Mclemore and Chenoweth, 
1997). The intimate association of uranium-vanadium min
erals with organic material, further indicates that the ura
nium and vanadium were deposited at the same time. 

Redistributed Uranium Deposits in the 
Cretaceous Dakota Sandstone 

A total of 501,169 lbs of U30 8 has been produced from 
redistributed uranium deposits in the Dakota Sandstone in 
the Grants uranium district (Mclemore, 1983; Chenoweth, 
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1989b). These deposits are similar in form and size to 
redistributed uranium deposits in the Morrison Formation 
and are found near primary and redistributed deposits in 
the Morrison Formation. Deposits in the Dakota Sandstone 
are typically tabular masses that range in size from thin 
pods a few ft long and wide to masses as much as 2,500 ft 
long and 1,000 ft wide. The larger deposits are only a few 
ft thick, but a few are as much as 25 ft thick (Hilpert, 
1969). Ore grades ranged from 0.12 to 0.30 percent U30 8 
and averaged 0.21 percent U30 8. Uranium is found with 
carbonaceous plant material near or at the base of channel 
sandstones, or in carbonaceous shale and lignite. The ura
nium is found along fractures, joints, or faults and within 
underlying permeable sandstone of the Brushy Basin or 
Wec.:i.water Canyon members. 

The largest deposits in the Dakota Sandstone are found 
in the Old Church Rock mine in the Church Rock subdis
trict of the Grants district, where uranium is associated 
with a major northeast-trending fault. More than 188,000 
lbs of U30 8 have been produced from the Dakota Sand
stone in the Old Church Rock mine (Chenoweth, 1989b). 

Limestone Uranium Deposits in the 
Jurassic Todilto Formation 

The oldest Jurassic-age uranium deposits in the Grants 
uranium district are limestone deposits in the Todilto lime
stone. Uranium is found only in a few limestones in the 
world, but the deposits in the Jurassic Todilto limestone 
are some of the largest and most productive (Chenoweth, 
1985b; Gabelman and Boyer, 1988). Uranium minerals 
were found in the Todilto limestone in the early 1920s, 
although it was Paddy Martinez's discovery in 1950 that 
resulted in development of the Grants district. From 1950 
through 1981, mines in the Grants district yielded 6,671,798 
lbs of U30 8 from the Todilto limestone, amounting to 
approximately 2 percent of the total uranium produced 
from the Grants district (Chenoweth, 1985b; Mclemore and 
Chenoweth, 1989, 1991). 

Limestone is typically an unfavorable host rock for ura
nium because of relatively low permeability and porosity, 
and lack of precipitation agents such as organic material. 
However, a set of unusual geological circumstances 
allowed the formation of uranium deposits in the Todilto 
limestone. The organic-rich limestones were deposited in a 
sabkha environment on top of the permeable Entrada 
Sandstone. The overlying sand dunes of the Wanakah For
mation (formerly Summerville Formation) locally deformed 
the Todilto muds, producing the intraformational folds in 
the limestone. Uraniferous waters derived from a highland 
to the southwest migrated through the Entrada Sandstone. 
Groundwater migrated into the Todilto limestone by evap
otranspiration or evaporative pumping. Uranium precipitated 
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in the presence of organic material within the intraforma
tional folds and associated fractures in the limestone (Fig. 
4; Rawson, 1981; Finch and Mclemore, 1989). The Todilto 
uranium deposits formed 150-155 million years ago (Ma), 
based on uranium-lead (U-Pb) isotopic dating, and are older 
than the 130 Ma Morrison Formation sandstone uranium 
deposits (Berglof, 1989; Berglof and Mclemore, 2003). 

More than 100 uranium mines and occurrences are 
found in the Todilto limestone in New Mexico; 42 mines 
have documented uranium production (Mclemore, 1983; 
Mclemore and Chenoweth, 1989; Mclemore et al., 2002). 
Most of these are in the Grants uranium district, although 
minor occurrences are found in the Chama Basin (Abiquiu 
and Box canyon areas), Nacimiento district, and Sanostee 
in the Chuska Mountains. Minor mineralization extends 
into the underlying Entrada Sandstone or overlying 
Wanakah Formation in some areas. Uranium is found in 
the Todilto limestone only where gypsum-anhydrite beds 
are absent (Hilpert, 1969). At least one company is actively 
exploring for uranium in the Todilto limestone in the 
Grants uranium district. 

Collapse-Breccia Pipe and Clastic Plug Deposits 

Uraniferous collapse-breccia pipe deposits were mined 
in northern Arizona for uranium beginning in 1951 and 
continuing into the 1980s; average production grades of 
0.5-0.7 percent U30 8 were common. Similar deposits are 
found in the Grants uranium district. Uraniferous collapse
breccia pipes are vertical or steeply dipping cylindrical fea
tures bounded by ring fractures and faults, and are filled 
with a heterogeneous mixture of brecciated country rocks 
containing uranium minerals. The pipes were probably 
formed by solution collapse of underlying limestone or 
gypsum (Hilpert and Moench, 1960; Mclemore, 1983; Wen
rich, 1985). 

More than 600 breccia pipes are found in the Ambrosia 
and Laguna subdistricts, but only a few are uranium bear
ing (Moench, 1962; Nash, 1968; Hilpert, 1969). Pipe struc
tures in the Cliffside (Clark and Havenstrite, 1963), Doris 
(Granger and Santos, 1963), and Jackpile-Paguate mines 
(Hilpert and Moench, 1960) have yielded ore as part of 
mining adjacent sandstone deposits; the exact tonnage 
attributed to these breccia pipes is not known. Very little 
brecciation has occurred at the Cliffside and Doris pipes, 
however, these pipes appear to be related to other breccia 
pipes in the area. The Woodrow deposit is the largest ura
nium producer from a breccia pipe in New Mexico 
(Mclemore, 1983), and is 24 to 34 ft in diameter and at 
least 300 ft high. The New Mexico breccia-pipe deposits 
are similar in form to the Arizona breccia pipes, but are 
lower in grade and smaller size. In Arizona, the mineral
ized Orphan Lode breccia pipe is 150 to 500ft in diameter 
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Todilto Limestone 

Entrada Sandstone 

• uranium orebodies 

and at least 1,500 ft long (Gornitz and Kerr, 1970). More 
than 134,000 lbs of U30 8 at a grade of 1.26 percent U30 8 
was produced from the Woodrow deposit However, the 
New Mexico uraniferous collapse-breccia pipes are uncom
mon and much smaller in both size and grade than the Ari
zona uraniferous collapse-breccia pipes. Future mining 
potential of New Mexico breccia pipes is unknown. Addi
tional research is needed to understand why some pipes 
are mineralized and others are not, and to determine the 
extent of mineralized breccia pipes in New Mexico. 

SOURCE OF URANIUM 

The source of the uranium and vanadium deposits in 
the Todilto limestone and Morrison Formation sandstones 
is not well constrained. The uranium could be derived 
from alteration of volcanic detritus and shales within the 
Morrison Formation that were erupted from volcanoes 
forming the Jurassic arc (Fig. 5; Thamm et al., 1981; 
Adams and Saucier, 1981; Turner-Peterson, 1985; Turner
Peterson and Fishman, 1986) or from groundwater derived 
from a volcanic highland to the southwest, i.e. the Jurassic 
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arc (Sanford, 1982, 1992). The source of uranium is impor
tant in understanding how the Grants deposits formed, 
establishing United States Geological Survey (USGS) geo
logic deposit type and geoenvironmental models, and 
locating additional uranium provinces elsewhere in the 
world. 

The age of the uranium deposits in the Grants district is 
constrained by numerous isotopic studies (Table 1; Fig. 6) 
and supports a potential Jurassic arc as the source. Jurassic 
volcanism, intra-arc sedimentation and plutonism are well 
documented throughout the Jurassic arc (Saleeby and 
Busby-Spera, 1992; Miller and Busby, 1995; Blakey and 
Parnell, 1995; Lawton and McMillan, 1999; Kowallis et al., 
2001; du Bray, 2007). 

Another potential source of uranium in the Grants dis
trict is a Proterozoic granitic highland, enriched in ura
nium, which lies south of the district, i.e. the Zuni 
Mountains. Gruner (1956) proposed that weathering and 
erosion of Proterozoic granitic rocks could have released 
large quantities of uranium, which along with uranium 
derived from volcanic ash, would have been sufficient to 
produce the uranium deposits in the Grants district Silver 
(1977) was one of the first to note a regional anomaly in 
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uranium concentration in the Proterozoic basement granitic 
rocks of the Colorado Plateau. The Zuni Mountains area, 
south and southwest of the Grants district, is known for its 
high heat flow of approximately 2-2.5 heat flow units 
(Reiter et al., 1975), and Proterozoic granites in the Zuni 
Mountains contain as much as 11 parts per million ura
nium (Brookins and Rautman, 1978), thus suggesting that 
these granites could have been a local uranium source. 

Uranium leached from the altered volcanic ash and from 
erosion of the Proterozic granitic highland could have 
been carried by ground and surface waters into the Todilto 
limestone and later into the Morrison Formation, forming 
the uranium deposits found in the Grants district The 
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Figure 5. Approximate location 
of the Jurassic arc in relation to 
the Morrison Basin. The Grants 
uranium district is in the southern 
San Juan Basin . 

presence of organic material caused the precipitation of 
the uranium in the uranium deposits, as summarized in 
Table 4. 

FUTURE POTENTIAL 

In 2002, the DOE estimated New Mexico contained 
known resources of 15 million tons of ore at 0.28 percent 
U30 8 (84 million lbs U30 8) at a forward cost of $30 per lb 
and 238 million tons of ore at 0.076 percent U30 8 at a for
ward cost of $50 per lb, ranking second in uranium 
resources in the US behind Wyoming (Energy Information 
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Age determinations of 

(Ma) 

Administration, 2006). The DOE classifies uranium reserves 
into forward cost categories of $30 and $50 U30 8 per lb. 
Forward costs are operating and capital costs (in current 
dollars) that are still to be incurred to produce uranium 
from estimated reserves. 

Only one company in New Mexico, the Quivira Mining 
Co. (successor to Kerr-McGee Corp., now owned by BHP
Billiton Pic.), produced uranium in 1989-2002, from waters 
recovered from inactive underground operations at 
Ambrosia Lake (mine-water recovery). Quivira Mining Co. 
is no longer producing uranium and the Ambrosia Lake 
mill and mines are reclaimed. 

Rio Grande Resources Co. is maintaining the closed 
facilities at the flooded Mt Taylor underground mine in 
Cibola County, where primary sandstone-hosted uranium 
deposits were mined as late as 1989. Reserves are esti
mated as 30,250,000 lbs U30 8 at 0.25 percent U30 8, which 
includes 7.5 million lbs of U30 8 at 0.50 percent U30 8 
(Table 3). Depths to ore average 3,300 ft. 

Several other companies are actively exploring for or 
permitting uranium resources in New Mexico (Table 3). 
Laramide Resources Ltd. controls the La Jara Mesa uranium 
deposit in Cibola County, formerly owned by Homestake 
Mining Co. and Anaconda This primary sandstone-hosted 
uranium deposit, discovered in the Morrison Formation in 
the late 1980s, contains 7,257,817 lbs of ore averaging 0.25 
percent U30 8 (Table 3). It is above the water table and is 
not suited to traditional in situ leaching technologies. New 
Mexico Mining and Minerals Division has approved an 
exploration permit for Laramide Resources Ltd. and a permit 
is pending for Urex Energy Corp., who also owns adjacent 
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Figure 6. Age determinations of Grants 
district mineralization. Includes Pb/U, K!Ar, 
Rb/Sr, and fission track dates from Miller 
and Kulp (1963), Nash and Kerr (1966), 
Nash (1968), Berglof (1970, 1989), 
Brookins et aL (1977), Brookins (1980), 
Ludwig et aL (1982), Hooper (1983) and is 
summarized by Wilks and Chapin (1997). 

properties to Laramide on Jara Mesa. Laramide Resources 
Ltd. also controls the nearby Melrich deposit (Table 3). 
Lakeview Ventures also acquired adjacent properties. 

Hydro Resources, Inc. (subsidiary of Uranium Resources 
Inc.) is waiting for final permit approvals and an increase 
in the price of uranium before mining uranium by in situ 
leaching at Church Rock and Crownpoint Production costs 
are estimated at $13.54 per lb of U30 8 (Pelizza and 
Mccarn, 2002, 2003a, b). Reserves at Church Rock (Section 
8 and Section 17 mines) and Mancos mines are estimated 
as 19 million lbs of U30 8 (Table 3; Pelizza and McCarn, 
2002, 2003a, b). Hydro Resources, Inc. estimates produc
tion costs at Crownpoint to be between $11.46 and $12.71 
per lb U30 8 (Pelizza and McCarn, 2002, 2003a, b). Hydro 
Resources, Inc. also controls Santa Fe Railroad properties 
in the Ambrosia Lake subdistrict 

Strathmore Minerals Corp. has acquired numerous prop
erties in the Grants district, including Roca Honda, Church 
Rock, and Nose Rock (Table 3). Strathmore hopes to mine 
uranium by both in situ leaching and conventional mining 
and milling. Mining permits are pending for the Roca 
Honda deposit 

Other properties are listed in Table 3. All of New Mex
ico's uranium reserves in the DOE estimates are in the 
Morrison Formation in the San Juan Basin, although explo
ration is occurring elsewhere in New Mexico. Compilation 
of company data suggests that approximately 403 million 
lbs of U30 8 remain as unmined resources (Table 3). Any 
conventional mining of uranium in New Mexico will 
require a new mill or the ore would have to be shipped to 
the White Mesa mill near Blanding, Utah. 
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TABLE4 

Sequence of uranium deposition in the Grants district (from youngest to oldest). The age of the mineralizing 
event is from isotopic dating (Fig. 6) or is estimated by the author based upon stratigraphic position. 

Depositional Event 

SecondaryTodilto limestone deposits 

Redistributed uranium deposits (Cretaceous Dakota 
Sandstone, Jurassic Brushy Basin and Westwater 
Canyon Sandstone members) 

Redistributed uranium deposits (Cretaceous Dakota 
Sandstone, Jurassic Brushy Basin and Westwater 
Canyon Sandstone members) 

Uranium in theJ3ckpile sandstone 

Uranium in the Poison Canyon sandstone 

Uranium in the Brushy Basin Sandstone Member 

Uranium in the Westwater Canyon Sandstone Member 

Deposition of the Morrison Formation units 

Todilto limestone uranium deposits 

Deposition of the Todilto limestone 

SUMMARY 

Age 

Tertiary,3-7 Ma 

Tertiary,3-12 Ma 

Cretaceous, 80-1 06 Ma 

110-115 Ma 

Unknown, 
estimated 130-115 Ma 

Unknown, 
estimated 130-115 Ma 

148-130 Ma 

Unknown, estimated 
before 130 Ma 

155-150 Ma 

Before 155 Ma 

Reference 

Berglof (1989) 

Miller and Kulp (1963), Nash and Kerr 
(1966) , Nash (1968), Brookins et aL 
(1977), Brookins (1980), Ludwig et aL 
(1982), Hooper (1983) 

Smith, R, and VT Mclemore 
(unpublished) 

Lee (1976) 

Miller and Kulp (1963), Nash and Kerr 
(1966) , Nash (1968), Brookins et aL 
(1977), Brookins (1980), Ludwig et aL 
(1982), Hooper (1983) 

Berglof(1970, 1989) 

Sandstone and limestone uranium deposits in New 
Mexico have played a major role in historical uranium 
production. Although worldwide other types of uranium 
deposits are higher in grade and larger in tonnage, the 
Grants uranium district has been a significant source of 
uranium and has the potential to become an important 
future source, as low-cost technologies, such as in situ 
leaching techniques improve, and as demand for uranium 
increases, increasing the price of uranium. However, sev
eral challenges need to be overcome by the companies 
before uranium could be produced once again from the 
Grants uranium district: 

• There are no conventional mills remaining in New Mex
ico to process the ore, which adds to the cost of pro
ducing uranium in the state. Currently all conventional 
ore must be processed by the White Mesa Mill in Utah 
or heap leached on site. New infrastructure will need to 
be built before conventional mining can resume. 

• Permitting for new in situ leaching, especially for con
ventional mines and mills, will take years to complete. 

• Closure plans, including reclamation, must be devel
oped before mining or leaching begins. Modern regula
tory costs will add to the cost of producing uranium in 
the US. 

• Some communities, especially the Navajo Nation com
munities, do not view development of uranium proper-
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ties as favorable. The Navajo Nation has declared that 
no uranium production will occur on Navajo lands. 
Most of Mt. Taylor and adjacent mesas have been des
ignated as the Mt. Taylor Traditional Cultural Property; 
the effect of this designation on uranium exploration 
and mining is uncertain. 

• High-grade, low-cost uranium deposits in Kazakhstahn, 
canada and Australia are sufficient to meet current inter
national demands; additional resources will be required 
to meet long-term future requirements. 
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